On optimizing crash energy and load-bearing capacity in cellular structures
نویسنده
چکیده
The energy absorption and load-bearing capacity under axial compression of some model cellular structures are studied with an eye toward optimization based on structural mass or volume available for deformation. Three configurations are considered: multilayer, multi-cell and multi-tube, all of a rectangular-cell topology. Loading is applied either parallel or normal to the cell axis. The cell’s aspect ratio and the relative density of the material q are systematically varied. The specimens are laterally confined by rigid walls to stabilize the deformation, but the effect of confinement diminishes for sufficiently large number of cells. A square-cell topology seems to be optimal. Together with an appropriate value for q, this provides an optimal constraint on the wavelength of the characteristic buckle and consequently extensive energy dissipation throughout the material body. When considering mean stress, crush energy and stroke or densification strain on the basis of minimum mass and volume simultaneously, q 0.5 seem to be a viable compromise among conflicting trends. The mechanical performance in this case is considerably improved over common cellular structures, for which q is typically <0.1. 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Influence of Elastic Support on the Energy Absorption in Front Crash Ductile Failure Criterion
Thin-walled structures like crash boxes may be used as energy absorption members in automotive chassis. There have been many studies addressing the behaviors of energy absorption members on frontal crash. These researches have attempted to predict the energy absorption and maximum impact load in shell structures. The energy absorption and maximum impact load depend on many parameters including ...
متن کاملProbing the Probabilistic Effects of Imperfections on the Load Carrying Capacity of Flat Double-Layer Space Structures
Load carrying capacity of flat double-layer space structures majorly depends on the structures' imperfections. Imperfections in initial curvature, length, and residual stress of members are all innately random and can affect the load-bearing capacity of the members and consequently that of the structure. The double-layer space trusses are susceptible to progressive collapse due to sudden buckli...
متن کاملBearing Capacity of Shallow Foundations on Cohesionless Soils: A Random Forest Based Approach
Determining the ultimate bearing capacity (UBC) is vital for design of shallow foundations. Recently, soft computing methods (i.e. artificial neural networks and support vector machines) have been used for this purpose. In this paper, Random Forest (RF) is utilized as a tree-based ensemble classifier for predicting the UBC of shallow foundations on cohesionless soils. The inputs of model are wi...
متن کاملExperimental and Numerical Study of Tension Bearing Capacity of Circular Skirted Foundations Resting on Sand Bed
Skirted foundations are an appropriate alternative to deep foundations in onshore and offshore structures, which have the ability to withstand uplift loads, are also easy to be installed. The tensile performance of skirted foundations on sand was studied by physical and numerical modeling. Laboratory tests were carried out on small-scale foundation models with peripheral skirts. Numerical model...
متن کاملBehavior of Model Circular Footings on Silty Soils with Cellular Supports
An experimental study of the effect of silt and influence of cell confinement on the bearing capacity of circular footings on silty sand was carried out. Laboratory experiments on clean sand and sand containing silt up to 25 % were performed. Cells with different heights and diameters were used to confine the silty sand. The effect of proportion of silt in sand, cell diameter, cell height and t...
متن کامل